In Vitro Ability of Currently Available Oximes to Reactivate Organophosphate Pesticide-Inhibited Human Acetylcholinesterase and Butyrylcholinesterase
نویسندگان
چکیده
We have in vitro tested the ability of common, commercially available, cholinesterase reactivators (pralidoxime, obidoxime, methoxime, trimedoxime and HI-6) to reactivate human acetylcholinesterase (AChE), inhibited by five structurally different organophosphate pesticides and inhibitors (paraoxon, dichlorvos, DFP, leptophos-oxon and methamidophos). We also tested reactivation of human butyrylcholinesterase (BChE) with the aim of finding a potent oxime, suitable to serve as a "pseudocatalytic" bioscavenger in combination with this enzyme. Such a combination could allow an increase of prophylactic and therapeutic efficacy of the administered enzyme. According to our results, the best broad-spectrum AChE reactivators were trimedoxime and obidoxime in the case of paraoxon, leptophos-oxon, and methamidophos-inhibited AChE. Methamidophos and leptophos-oxon were quite easily reactivatable by all tested reactivators. In the case of methamidophos-inhibited AChE, the lower oxime concentration (10(-5) M) had higher reactivation ability than the 10(-4) M concentration. Therefore, we evaluated the reactivation ability of obidoxime in a concentration range of 10(-3)-10(-7) M. The reactivation of methamidophos-inhibited AChE with different obidoxime concentrations resulted in a bell shaped curve with maximum reactivation at 10(-5) M. In the case of BChE, no reactivator exceeded 15% reactivation ability and therefore none of the oximes can be recommended as a candidate for "pseudocatalytic" bioscavengers with BChE.
منابع مشابه
Reactivation of Human Acetylcholinesterase and Butyrylcholinesterase Inhibited by Leptophos-Oxon with Different Oxime Reactivators in Vitro
We have evaluated in vitro the potency of 23 oximes to reactivate human erythrocyte acetylcholinesterase (AChE) and plasma butyrylcholinesterase (BChE) inhibited by racemic leptophos-oxon (O-[4-bromo-2,5-dichlorophenyl]-O-methyl phenyl-phosphonate), a toxic metabolite of the pesticide leptophos. Compounds were assayed in concentrations of 10 and 100 μM. In case of leptophos-oxon inhibited AChE,...
متن کاملDocking Studies, Synthesis, and In-vitro Evaluation of Novel Oximes Based on Nitrones as Reactivators of Inhibited Acetylcholinesterase
Acetylcholinesterase has important role in synaptic cleft. It breaks down the acetylcholineatcholinergic synapsesand terminates the cholinergic effects. Some chemical agents likeorganophosphorus compounds (OPCs) including nerve agents and pesticides react withacetylcholinesteraseirreversibly. They inhibit normal biological enzyme action and resultin accumulation of acetylcholineand show toxic e...
متن کاملDocking Studies, Synthesis, and In-vitro Evaluation of Novel Oximes Based on Nitrones as Reactivators of Inhibited Acetylcholinesterase
Acetylcholinesterase has important role in synaptic cleft. It breaks down the acetylcholineatcholinergic synapsesand terminates the cholinergic effects. Some chemical agents likeorganophosphorus compounds (OPCs) including nerve agents and pesticides react withacetylcholinesteraseirreversibly. They inhibit normal biological enzyme action and resultin accumulation of acetylcholineand show toxic e...
متن کاملEffect of Gallic Acid on Reactivation of Acetylcholinesterase and Butyrylcholinesterase Inhibited by Diazinon in Vitro and in Vivo
Background and purpose: Diazinon is an organophosphate insecticide that binds to the acetylcholinesterase enzyme after metabolization causing its inactivation. Galic acid is a polyphenolic compound with nucleophilic properties. The aim of this study was to investigate the effects of gallic acid on reactivation of acetylcholine and butyrylcholinesterase inhibited by diazinon in mice and human se...
متن کاملNovel bisquaternary oximes--reactivation of acetylcholinesterase and butyrylcholinesterase inhibited by paraoxon.
Four novel bisquaternary aldoxime cholinesterase reactivators differing in their chemical structure were prepared. Afterwards, their biological activity was evaluated for their ability to reactivate acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BuChE; EC 3.1.1.8) inhibited by paraoxon. Their reactivation activity was compared with standard reactivators--pralidoxime, obidoxi...
متن کامل